Near-death Experience (Wiki Commons) |
Discover our range of post boxes, designed to secure & protect deliveries. Choose from lockable, wall mounted, and weatherproof designer post boxes in a variety of styles and colours to suit you. Whether you're looking for vintage, US mailbox or sleek contemporary styles, you're sure to find it with us. Order your post box with us today. Polished Chrome Letter Tidy - 282 x 82mm. Whether you want to leave your front door intact, or you’re happy with the traditional letter box slot – either way, you’ll find plenty to of letter boxes to browse at Homebase. Letter boxes for doors can be horizontal or vertical, flap or spring opening. Enter your Delivery Location. → Manage my PO Box. PO Box Subscription. Link your PO Box subscription in My Account. Please Contact Qatar Post to Update your Contact/Mobile Number No Subscription Found For This Account No Record Found For This Account. OTP Enter your valid OTP Code.
First, to put this research into context, death-related brain activity was examined in rats, not humans. For obvious reasons, it is easier to study the death process in animals rather than humans. In this study, nine rats were implanted with electrodes in various brain regions, anaesthetised then 'euthanized' (i.e., killed). The exact moment of death was identified as the last regular heartbeat (clinical death). Electroencephalogram (EEG) was recorded during normal waking phase, anaesthesia and after cardiac arrest (i.e., after death) from right and left frontal (RF/LF), parietal (RP/LP) and occipital (RO/LO) cortex (see Figure below). Data shown in panel A ranges from about 1hr before death to 30mins afterwards. At this coarse scale you can see some patterns in the waking data that generally reflect high frequency brain activity (gamma band, >40Hz). During anaesthesia, activity becomes synchronised at lower frequency bands (especially delta band: 0.1–5 Hz), but everything seems to flatline after cardiac arrest. However, if we now zoom in on the moment just after death (Panels B and C), we can see that the death process actually involves a sequence of structured stages, including a surge of high-frequency brain activity that is normally associated with wakefulness.
Adapted from Fig 1 of Borjogin et al. (2013) |
In the figure above, Panel B shows brain activity zoomed in at 30min after death, and Panel C provides an even closer view, with activity from each brain area overlaid in a different colour. The authors distinguish four distinct cardiac arrest stages (CAS). CAS1 reflects the time between the last regular heartbeat and the loss of oxygenated blood pulse (mean duration ~4 seconds). The next stage, CAS2 (~6 seconds duration) ended with a burst in delta waves (so-called 'delta blip' ~1.7 seconds duration), and CAS3 (~20 seconds duration) continued until there was no more evidence of meaningful brain activity (i.e., CAS4 >30mins duration). These stages reflect an organized series of brain states. First, activity during CAS1 transitions from the anaesthetised state with an increase in high-frequency activity (~130Hz) across all brain areas. Next, activity settles into a period of low-frequency brain waves during CAS2. Perhaps most surprisingly, during CAS3 recordings were dominated by mid-range gamma activity (brain waves ~35-50Hz). In further analyses, they also demonstrate that this post-mortem brain activity is also highly coordinated across brain areas and different frequency bands. These are the hallmarks of high-level cognitive activity. In sum, these data suggests that long after death, the brain enters a brief state of heightened activity that is normally associated with wakeful consciousness.
Heightened awareness just after death
Adapted from Fig 2 of Borjogin et al. (2013) |
Nevertheless, as the authors note, this research certainly demonstrates that activity in the brain is consistent with active cognitive processing. The results demonstrate that a neural explanation for these experiences is at least plausible. They have identified the right kind of brain activity for a neural explanation of near-death experiences, yet it remains to be verified whether these signatures do actually relate directly to the subjective experience.
Future directions: The obvious next step is to test weather similar patterns of brain activity are observed in humans after clinical death. Next, it will be important to show that such activity is strongly coupled to near-death experience. For example, does the presence or absence of such activity predict whether or not the person would report a near death experience. This second step is obviously fraught with technical and ethical challenges (think: The Flatliners), but would provide good evidence to link the neural phenomena to the phenomenal experience.
Key Reference:
Borjigin, Lee, Liu, Pal, Huff, Klarr, Sloboda, Hernandez, Wang & Mashour (2013) Surge of neurophysiological coherence and connectivity in the dying brain. PNAS
Related references:
Tononi G (2012) Integrated information theory of consciousness: An updated account. Arch Ital Biol 150(2-3):56–90.
Auyong DB, et al. (2010) Processed electroencephalogram during donation after
cardiac death. Anesth Analg 110(5):1428–1432
Related blogs and news articles:
BBC News
Headquarters Hosted by the Guardian
National Geographic
The Independent
plzzz give me brainliest ans and plzzzz follow me
Post Box B And Q Ireland
There is a total of 75 counters in the three boxes:
Counters in box A + counters in box B + counters in box C = 75
x + (2x+7) + (3x−4) = 75
6x + 3 = 75
6x = 72
x = 12
Next we calculate the number of counters in box B
= 2x+7
= 24+7
= 31
Box B has 31 counters
B And Q Online
A and B counters = 36
The difference between A and C is 10.
Since we already know A and B we can subtract them from 63 to get C
C= 63- 36 = 27
Now we have to find A by looking for what number gives us the difference of 10 when subtracted from C.
36 = 18+ 18 or 19+ 17
18 and 18 wont work because it does not give us the difference of 10.
So A = 17 counters and B = 19 counters.
There is a total of 75 counters in the three boxes:
Counters in box A + counters in box B + counters in box C = 75
x + (2x+7) + (3x−4) = 75
6x + 3 = 75
6x = 72
x = 12
Next we calculate the number of counters in box B
= 2x+7
= 24+7
= 31
Box B has 31 counters
4)sin square theta+cos square theta=1